

OSCI-Transport, Version 2
Technical Features Overview

OSCI Steering Office

Status: Final
Pulished 1st of June, 2009

Editor: Jörg Apitzsch, bremen online services GmbH & Co. Kg

OSCI-Transport Version 2 – Technical Features Overview Seite 2

Table of Contents

1 Introduction... 3
2 OSCI Messaging: Adoption and Extension of Web Services Specifications 5

2.1 General SOAP Message Structure ... 5
2.2 Role and Communication Model... 5

2.2.1 Secured Web Service Paradigm – Authentication and Authorization 5
2.2.2 Communication Endpoints... 6
2.2.3 Message Relaying ... 8
2.2.4 Verifiability of Message Exchange... 8
2.2.5 Message Exchange Patterns... 9
2.2.6 Dedicated Dispatcher Service ... 10

2.3 Addressing Messages... 10
2.4 Token for Authentication and Authorization .. 11
2.5 Securing Messages... 11
2.6 Validation of X509-Certificates.. 11
2.7 Message Types... 12

2.7.1 WS-Trust Messages .. 12
2.7.2 OSCI Messages... 13

2.8 Supplemental Services for Source/Target Applications.. 15
3 Specifications and Concepts incorporated by OSCI 2 ... 16

© 2009 OSCI Steering Office

OSCI-Transport Version 2 – Technical Features Overview Seite 3

© 2009 OSCI Steering Office

1 Introduction
This document gives on overview of the principles of the OSCI 2 architecture and specification. Uts
intention is, to give readers a base background for the document "OSCI Transport, Version 2.0 – Web
Servcies Profiling and Extensions Specification".

Online Service Computer Interface (OSCI) is a message standard for eGovernment. Since 2002,
version 1.2 of this standard has been increasingly used for confidential and legally binding
communication via the Internet1 in Germany by the public administration, in certain business sectors
and their customers and some other European countries, too. OSCI builds up of two parts – part A or
"OSCI Transport" addresses message exchange, part B addresses the development of interoperable
exchange schemes on functional, business scenario specific levels. Objective of part A of OSCI are
payload-agnostic message exchange mechanisms.

OSCI Transport was designed to enable the complete and legally binding handling of transactions in
the field of eGovernment via the Internet and on the basis of the digital signature. However, scenarios
for exchanging messages and documents are also supported, which are not necessarily demanding
with a view to their legally binding nature, but which still require a certain level of confidentiality,
verifiability and secured integrity of communications. This requires comprehensive interoperability,
both on the level of the content data and on the level of transport and security functions. Furthermore,
procedures and rules must be taken into consideration, which apply to the area of public activities. The
resulting requirements have determined the design objectives for OSCI. OSCI Transport follows the
communication paradigm of Web Services; version 1.2 is based on SOAP 1.1 with its own modelling
for security mechanisms based on XML Digital Signature and XML Encryption.

Meanwhile much of the principles and objectives of OSCI Transport are addressed by the building
blocks of the Web Services protocol family – the so called "WS-Stack". This generic protocol stack is
designed to serve arbitrary business scenario requirements for message exchange over open
networks. Profiling has to be done for manifesting the general requirements of eGovernment
communication scenarios. For the objective of maximised interoperability, restrictions to the degrees
of freedom offered by the WS-Stack must be defined.

In consequence, profiling of relevant protocols of the WS-Stack is the major objective of "OSCI
Transport Version 2.0 – Web Services Profiling and Extensions specification" – short "OSCI2" in this
document. This profiling is intended to be aligned with similar efforts actually driven by a couple of
other EU member states; common goal is establishing interoperable eGovernment communication
infrastructures between those countries. Efforts have been made by the Web Services Interoperability
Organization (WS-I)2 to establish a baseline for interoperable Web Services implementations.
Profilings of relevant WS-Specifications specify a minimum set of clarifications, recommendations and
restrictions that Web Services should support to ensure interoperability across diverse platforms. For
OSCI2, the WS-I Basic Profile Version 2.0 [WSI-Basic] and WS-I Basic Security Profile Version 1.1
[WSI-BP11] accordingly apply as references. Version 2.0 of the WS-I Basic Profile is the first covering
the set of relevant specifications OSCI2 builds on, but still is a working draft whilst writing OSCI2. WS-I
Basic Security Profile Version 1.1 is in the state of a working group approval draft at the same time.
Hence, the actual version of the OSCI2 may be subject to refinements, if the forthcoming approved
versions of mentioned WS-I Profiles should contain relevant changes.

WS-I Basic Profile itself refers to profilings fixed in WS-I Basic Profile Version 1. These profilings are
incorporated by OSCI2, too.

1 Refer to [OSCI]
2 see www.ws-i.org

OSCI-Transport Version 2 – Technical Features Overview Seite 4

To ensure interoperability and data protection issues, collections of template policies for classes of
business scenarios will be developed and published as addendum to the OSCI specification. This will
be done by a special project starting mid 2009.

In addition, OSCI2 defines some extensions to the WS-Stack for functionalities which are identified as
indispensable in German eGovernment but not yet addressed by the Web Services protocol family.

For sake of interoperability, these extensions may be marked optional in concrete scenarios where
messages have to be exchanged with implementations of the WS-Stack protocol family not able to
serve OSCI2 specialities. This is considered to be the main anchor for OSCI2 conformant
implementations to exchange messages with standard industry solution environments for Web
Services based communication.

© 2009 OSCI Steering Office

OSCI-Transport Version 2 – Technical Features Overview Seite 5

2 OSCI Messaging: Adoption and Extension of Web
Services Specifications

2.1 General SOAP Message Structure
The general message structure conforms to [SOAP12]. All data needed for message transport and
message security is placed in the SOAP header. SOAP header blocks are defined by specifications of
the WS-Stack incorporated and some of them profiled by OSCI2. For requirements going beyond
today's WS-Stack capabilities custom headers are defined, referred to as OSCI header. All these
SOAP header blocks together constitute the Communication Data.

From the OSCI2 point of view the SOAP body is opaque. Information carried herein is specific to
application scenarios and referred to as Content Data in OSCI2.

Figure 1: General Message Structure

Attachments in any format can be part of Content Data. For handling of attachments the specification
"SOAP Message Transmission Optimization Mechanism" [MTOM] is incorporated without restriction.

2.2 Role and Communication Model
The underlying generalized model of entities involved in the communication and message exchange
patterns (MEP) is the one defined in [SOAP12]. In concretion, Source Applications produce Content
Data to be consumed by Target Applications. Both are using OSCI Gateways for secured, reliable
and traceable message exchange. These gateways act in the role of SOAP endpoints. Depending on
the individual endpoint capabilities and needs of a concrete MEP, further SOAP intermediary nodes
may be passed on the message route acting in OSCI2 specific roles defined in the OSCI specification.

2.2.1 Secured Web Service Paradigm – Authentication and Authorization
Every logical node a message is targeted to is seen as Web Service Provider (SP) node; in open,
potentially unsecured networks, access to such services must be secured on base of sufficient
authentication and authorization of the respective Service Requestor (SR).

We assume closed groups of participants in OSCI2-based communication networks (anonymous
allowed only in special cases). Besides use of X509-Certificates and Public Key Infrastructure (PKI),
we incorporate the concepts of Web Services Trust [WST] and Web Services Federation Language
[WSFED] like Trust Domains (TD), Identity Provider (IdP), Security Token Service (STS) and
Attribute Service (AS). OSCI2 communication networks are grouped in Trust Domains, where all

© 2009 OSCI Steering Office

OSCI-Transport Version 2 – Technical Features Overview Seite 6

© 2009 OSCI Steering Office

endpoints and nodes must be registered in a trustworthy manner, whereby the strongness of
authentication mechanisms must be scalable according to specific business scenarios needs.
Verifiable security tokens proving identity, authentication and authorization of Service Requestors
must be carried along with the request – respective those of the Service Provider in the resulting
response message.

If not based on agreements between communication endpoints out-of-band of the OSCI specification,
addressable nodes in an OSCI2 communication network must expose their service capabilities and
security needs based on machine readable policies. With regard to these needs, OSCI makes the only
assumption that those policies should be exposed in form of a formal description according to Web
Services Description Language [WSDL11] and mechanisms. Services like registries for locating
communication endpoints and infrastructure service nodes in an OSCI2 communication network are
out of scope of this specification.3

Use of X509-Certificates and PKI at least is an ultimate anchor for validity verification, authentication
and authorization issues.

Thus, nodes involved in OSCI2 based message exchange must rely on additional service instances as
illustrated by general overview in [Figure 2].

2.2.2 Communication Endpoints
OSCI2 defines an OSCIGateway for the endpoints of a message Initiator and the final message
destination Recipient4; messages named osci:Request and osci:Response are exchanged
between those two endpoints. Optionally needed services can be acquired from intermediaries on the
message route according to the underlying particular endpoint policies or scenario specific
requirements.

Figure 2: Roles and supplemental Services Overview

An OSCI Gateway is a logical bundle of functionalities for composing/ sending respective receiving/
decomposing/ validating OSCI messages. Concrete implementations should allow decoupling of these
functionalities, thus allowing to arrange them in a bus architecture with distinct nodes for stepwise

3 For a possible solution of these issues as well as attribute services, see the concept of S.A.F.E. (Secure Access

to Federated e-Justice/e-Government and the German administration service registry Fehler!
Verweisquelle konnte nicht gefunden werden..

[SAFE]

4 With message Initiator and Recipient, we follow the nomenclature choosen in SOAP Message Security 1.1
 [WSS]

OSCI-Transport Version 2 – Technical Features Overview Seite 7

© 2009 OSCI Steering Office

processing. Like this, an institution operating OSCI Gateways would be able to arrange constituents of
an OSCI Gateway according the compliances of their network zones layout.

Source Applications work on content data, designated for Target Applications – so far out of scope
from OSCI2. But for the possible needs of digital signature, end-to-end encryption and application-
level handshake, some functions are needed here, which MUST be made available by an OSCI
Gateway implementation5:

• Signing of content data, including visualization; optional time stamping

• Signature verification including access to validity verification of X509-Certificates

• Profile/policy information of Target Application respective Source Application including
WSDL for addressing information, content level message exchange, X509-Certificates to
be used for end-to-end encryption, digital signature requirements on content data level

• Encryption and decryption functionalities.

Following functions of OSCI Gateways are covered by several implementations of the WS-Stack
available today:

The OSCI Gateway in role Initiator composes the communication data and initiates the transport:

• Access to policy of targeted message endpoint

• Acquirement of security token outlined in policy (request to a STS)

• Placement of addressing-data according to targeted endpoint, possible headers and
routing information for intermediary service nodes to be passed

• Generation and placement of unique message-id

• If applicable: placement of correlation information to foregoing messages, generally to be
triggered by Source- / Target Applications

• Signature, encryption on transport level

• Reliable message delivery

• Receiving and validating response messages including receipts - steps done like by an
OSCI Gateway in role Recipient.

The OSCI Gateway in role Recipient:

• Receives (point-to-point) or pulls (inbound request in hold in a message relay, which is
explained below) the message

• Decryption and check of communication data, identification and authorization of Initiator of
incoming / pulled message

• Delivery of content data and validation information to Target Application

• Getting content-response from Target Application, composing and initiating response,
steps done like by the OSCI Gateway in role Initiator.

Functionalities not at all or only partially addressed by the actual WS-Stack follow. As an anchor for
intended interoperability with WS-Stack implementations not able to serve functionalities outlined here,
service requests for these extensions may be marked optional on protocol level given by standard
SOAP mechanisms.

One of the characteristics of OSCI2 is the support of communication traceability and provableness. An
OSCI Gateway must have the possibility to request receipts of message delivery from logical nodes on
the message path as well as final message acceptance by the targeted endpoint. For the latter receipt

5 As far as needed for the secure transport functionality and access to endpoint policy information. Third party

products may be used for content data signing, signature verification and encryption/decryption.

OSCI-Transport Version 2 – Technical Features Overview Seite 8

© 2009 OSCI Steering Office

– defined as "ReceptionReceipt" later on in this document – a role Ultimate Recipient is introduced
which corresponds to the Ultimate Receiver of [SOAP12]. This is the endpoint the – eventually end-to-
end encrypted - SOAP body is targeted to. An Ultimate Recipient may be positioned behind the
transport OSCI Gateway of the Recipient which is only processing the SOAP header blocks.

An OSCI Gateway therefore additionally must

• have the possibility to request receipts of message delivery for outgoing messages from
logical nodes on the message path as well as final message acceptance by the targeted
endpoint;

• be able to issue such receipts, if requested in incoming messages.

2.2.3 Message Relaying
OSCI2 supports endpoint-to-endpoint communication as well as communication via a relay
("Message-Box Service", short name MsgBox in OSCI2). The latter is only applicable for
asynchronous message exchange patterns, as the intended Recipient has to pull the message from
this service instance. As of today, it’s rather the exception that services of administrations can be
reached online; customers of administration are supposed to drive their electronic communication in a
mostly sporadic way. This leads to the requirement of MsgBox services for fully asynchronous
message exchange. An additional advantage of involving such a relay in the message path is often
seen in the fact, that the Recipient must open the network connection and in general is protected from
incoming connections.

Hence messages either are sent to the Recipient in a point-to-point manner or to his MsgBox, a
MsgBox acts as OSCI/SOAP endpoint, too.

For support of communication traceability and provableness, a MsgBox service must be able to receipt
messages passing; as of its relaying behaviour it must be traceable when messages are accepted as
well when they are pulled from the Recipient node.

2.2.4 Verifiability of Message Exchange
Different requirements on traceability and provableness of message exchange are defined for
messages of type osci:Request and osci:Response. As acknowledgement of technical delivery is
always implied on base of the underlying transport protocol http, accurate service of these
requirements leads to three types of receipts on message delivery and reception, which can be
demanded by Initiator and Recipient instances:

• DeliveryReceipt – what has been delivered when to which node; this is a receipt which
every logical SOAP/OSCI node on a message path MUST be able to generate at time of
acceptance of message pushed to this node. If requested, a DeliveryReceipt is always
delivered to the foregoing node as header block in the SOAP response delivered in
the network backchannel. Generally spoken, the "what" is cryptographic information
about the submitted opaque body – which in case of using MsgBox services on the
message route must be encrypted data. The DeliveryReceipt has to be signed by its
producing instance; regarding the "what" a ds:Reference6 to the SOAP body block
MUST be included in the signature applied by the receipting instance. If present, body
block transport encryption has to be stripped off preceding receipt generation. The
signature in additions covers delivery time as well as addressing data carried in the SOAP
header. Like this, every logical SOAP/OSCI node is able to prove what he has successfully
transmitted when to which endpoint. In case the body is end-to-end encrypted for the
Ultimate Recipient or a targeted application behind the transport gateway of the Recipient,
we strongly recommend the Initiator respective Source Application SHOULD additionally

6 For definition see [XMLDSIG]

OSCI-Transport Version 2 – Technical Features Overview Seite 9

encrypt the SOAP body for themselves and save a copy of the message to be able to
decrypt the content in case of possible later verification needs.

• ReceptionReceipt – this receipt can only be requested from the Ultimate Recipient
instance of a message. Content of this receipt is nearly the same as denoted for the
DeliveryReceipt with the difference, that the Recipient instance has to include a
ds:Reference pointing to the decrypted body of the received message in the signature
of the ReceptionReceipt. The ReceptionReceipt is delivered in the SOAP body of a
separate osci:Request to the endpoint to be exposed in the demand for this
ReceptionReceipt – which in general should be the MsgBox of the requesting Initiator (or
again, the one of the Recipient node in case of response messages).

• FetchedNotification – a MsgBox service can be requested by the Initiator to signal the
fact that the intended recipient is pulling the message from his MsgBox instance. This
notification gives an additional control to the Initiator, whether there is any activity
concerning the once submitted osci:Request.

2.2.5 Message Exchange Patterns
The following sequence diagrams illustrate the different osci:Request/ osci:Response MEPs including
respectively possible receipt generation and delivery. For sake of clarity, all additional needed
message exchanges with services like STS instances are omitted.

This MEP overview only considers the different possible ways of osci:Request delivery from an
Initiator node to the Recipient and the ways back possible for the osci:Response. As communication
verifiability must be possible for response messages, too, the sequence diagrams apply accordingly
for osci:Response messages.

The diagrams in the following subchapters show every possible asynchronous delivery of receipts as
targeted to the MsgBox instance of the Initiator. In fact, this target could be any Initiators specialized
node able to accept and consume such type of messages. The same is true for asynchronous delivery
of OSCIReponses.

2.2.5.1 Initiator to Recipient synchronous point-to-point
This MEP must be used if the response of the Target Application addressed is to be expected in the
network connection backchannel of an osci:Request.

Figure 3: Sequence: Synchronous MEP

If requested by the Initiator of an osci:Request message, a DeliveryReceipt is delivered as SOAP
header block of the resulting osci:Response in the network connection backchannel of the
osci:Request. A possible response generated immediately by the Target Application is placed in the
SOAP body block. If a ReceptionReceipt was demanded, it can not be generated before decryption of
the osci:Requests body; the ReceptionReceipt is delivered in the body of new osci:Request message.

Similar is the MEP, where the osci:Request is sent to the Recipient node directly but the response is
delivered decoupled. In this case, the osci:Response contains an empty SOAP body (if no error
occurred) and the response is sent in the SOAP body block of a separate osci:Request. The target

© 2009 OSCI Steering Office

OSCI-Transport Version 2 – Technical Features Overview Seite 10

destination of this osci:Request must be ascertained as "ReplyTo"-address by the Initiator in the initial
osci:Request.

2.2.5.2 Initiator to Recipients MsgBox, asynchronous Response
The osci:Request is delivered to the Recipients MsgBox. If requested, a DeliveryReceipt generated by
the MsgBox endpoint is delivered as SOAP header block in the network connection backchannel of
the osci:Request.

Figure 4: Sequence: MEP Initiator sends request to Recipients MsgBox

The Recipient must pull the osci:Request from his MsgBox (MsgBoxFetchRequest). If a
ReceptionReceipt was demanded, it can be generated now after decryption of the osci:Request’s
body. It is delivered in the body of new SOAP message.

The osci:Response to the request is generated in a totally decoupled way. Once generated, it is
delivered to the Initiator MsgBox.

2.2.6 Dedicated Dispatcher Service
Outbound message routing is a functionality which usually should be provided as integrated part of an
OSCI Gateway.

If needed in concrete architectural concepts, it is possible to define a further logical node Dispatcher
A Dispatcher service instance may be used by endpoints Initiator or Recipient as a transfer point,
where outbound messages are routed to for delegation of delivery processing in a decoupled mode.
Receipts for message dispatching may be gained from those nodes, too.

As this role and related MEPs are not part of the core OSCI Transport specification, see appendices to
this document describing concrete application scenarios. Request SOAP header blocks for receipting
the dispatching process - DispatchedReceiptDemand and resulting DispatchedReceipts - are
defined in an own namespace similar to the OSCI constructs for DeliveryReceipts.

2.3 Addressing Messages
The OASIS specification Web Services Addressing [WSA] is incorporated with profilings outlined in
this document. Every destination endpoint may define types of business scenarios it is able to accept
messages for, which is addressed by wsa:ReferenceParameters in a concrete message. In
addition a set of metadata information items are defined. The mechanisms described in Web Services
Addressing Metadata [WSAM] and Web Services Policy Attachment [WSPA] are used to include
WSDL metadata in endpoint references. The SOAP binding for Web Services Addressing specified in
[WSASOAP] is incorporated with the restriction to the SOAP version 1.2 binding.

© 2009 OSCI Steering Office

OSCI-Transport Version 2 – Technical Features Overview Seite 11

© 2009 OSCI Steering Office

Support of Web Services Reliable Messaging [WSRM] is optional for implementations conformant to
OSCI2, as sufficient reliability of delivery is seen to be given by the binding to http(s) and the OSCI2
feature of receipting message delivery and reception.

As an optional feature, implementations may support anonymous endpoints for Service Requestors as
described in Web Services Make Connection [WSMC]. It defines a mechanism to uniquely identify
non-addressable endpoints, and a mechanism by which messages destined for those endpoints can
be delivered. For sake of interoberabilty, a master profiling will be made regarding the mechanisms
described there, in addition defining minimum requirements for authentication and authorization
suitable for them7.

2.4 Token for Authentication and Authorization
As already mentioned in chapter [2.2.1], access to nodes in OSCI2 based communication must be
secured on base of sufficient authentication and authorization. In general, the token push model is
used for authentication purposes, SAML-Token must be carried along with messages, which express
authentication and authorization properties. Here, the specifications [SAML2] and [SAMLAC] are
incorporated and profiled.

2.5 Securing Messages
Hence OSCI2 messaging is not more than SOAP messaging with certain specific extensions, the
mechanisms specified in SOAP Message Security 1.1 [WSS] are the base of secured message
exchange. Communication nodes express their security needs in form of policies, as described in WS
Security Policy [WSSP]. OSCI2 defines templates for security policies to fulfil minimal security
requirements. Based on those templates, more restrictive policies may be defined following the needs
of concrete scenarios. On the other hand, it may be possible to drive OSCI2 based communication on
base of more or less lax security policies, if security is given by other conditions like message
exchange in protected closed networks.

Mechanisms defined by WS Secure Conversation [WSSC] MUST be supported by implementations
conformant to OSCI2. The use of WS Secure Conversation is strongly recommende for scenarios
where exchange of sequences of request-/responses messages between to endpoints must be
expected. I. e., this in general applies to MsgBox access by the Recipient.

2.6 Validation of X509-Certificates
It MUST be possible to carry X509-Certificates used in the SOAP body block of a message on SOAP
header block level. Like this – even when the body is encrypted for the Ultimate Recipient of a
message – it is possible to check the validity of those X509-Certificates on the message route by
nodes offering services to link to CAs (or nodes bridging to such services).

OSCI2 defines a SOAP custom header for carrying X509-Certificates and details of usage in the
message body block parts where they where used.

OSCI2 ascertains the format of carrying validation results as defined in the XML Key Management
Specification XKMS2/XKISS [XKMS]. Few extensions to the XKMS Validate Results are defined
covering following aspects to be included in the certificate validation process:

• requirements of the German Signature Law and –Ordinance

• rankings for algorithm suitability

• rankings of certificate quality / cryptographic service providers ("Trusted Service Lists").

7 This will be one part of the profilings addendum successively published from mid 2009 on

OSCI-Transport Version 2 – Technical Features Overview Seite 12

As this XKMS-Profiling is an ongoing process in the context of EU projects, we refer to specifications
produced there.

2.7 Message Types

2.7.1 WS-Trust Messages
For acquisition, validation and other handling of security tokens, OSCI2 conformant implementations
must support message types defined by WS-Trust [WST] and the token formats profiled here:

• Request Security Token (RST) – message to be send to STS of IdPs with following bindings
defined by WS-Trust:

o Issuance – request to issue a token. Based on the credential provided/proven in the
request, a new token is issued, possibly with new proof information.

o Cancel - when a previously issued token is no longer needed, the Cancel binding can
be used to cancel the token, terminating its use.

o Validate – The validity of the specified security token is evaluated and a result is
returned. The result may be a status, a new token, or both.

• Request Security Token Response (RSTR) – response message of STS to return requested
security tokens and/or STS operational results.

Token following the SAML specification version 2.0 [SAML2] must be supported and carried along with
OSCI message types described below.

Communication nodes should expose token requirement details and issuer addresses in their WSDL
following the specification WS Security Policy [WSSP].

Role-based transient identity mapping is used for cross-domain authentication and authorization. It is
up to the Initiator to gain the required security tokens needed for service consumption in a foreign trust
domain. To make federation work, IdPs of involved domains must have established a relationship of
trust. WS-Federation [WSFED] specifies mechanisms and metadata elements to be able to use
security tokens across domain boundaries.

The figure below illustrates the general scenario:

• Requestor (at Initiator OSCIGateway) acquires a SAML-Token from the IdP of his trust
domain (STS in TD-I) for authentication at IdP in trust domain of the Recipient (STS TD-R).

• Based on this token for IdP/TD-R, STS of IdP in TD-R issues a SAML-Token for
authentication and authorization at Recipient OSCIGateway (entry point of Service Provider).

• This SAML-Token for Recipient Gateway (Rec-GW) is pushed as part of the Initiators
osci:Request message.

© 2009 OSCI Steering Office

OSCI-Transport Version 2 – Technical Features Overview Seite 13

© 2009 OSCI Steering Office

Figure 5: Role-based federation in the push-model

As profilings on WS-Trust and related specifications and for details to SAML-Token are used in the
context of OSCI Transport, we incorporate those outlined in the concept S.A.F.E. (Secure Access to
Federated e-Justice/e-Government [SAFE]). This is only one possible profiling, other profilings
conformant to WS-Trust and SAML may be used.

As WS-Federation is in ongoing OASIS specification process8 while compiling OSCI2, parts related to
means of WS-Federation will be included in OSCI2 at the time WS-Federation in Version 1.2 will be
stable9. This will only have the impact to extend the capabilities of endpoints concerning acquirement
of SAML token; other functionalities described here will not be affected.

2.7.2 OSCI Messages
OSCI messages have to be seen as logical constructs, which differ in constituent blocks of SOAP
headers and body. Headers following WS-Addressing, WS-Security including SAML-Token are always
implied.

2.7.2.1 osci:Request /-Response
Message exchange with OSCI communication partners is initiated by an osci:Request, which always
is responded with an osci:Response in the network connection backchannel. An osci:Request always
carries Content Data in the SOAP body to a Target Application, an osci:Response may carry a SOAP
body with the response Content Data produced by the Target Application (respective Source
Application in conversational request-/response MEPs).

8 The actual state of works done by the OASIS Web Services Federation Technical Committee is avaible at

http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsfed
9 Expected during 2009

OSCI-Transport Version 2 – Technical Features Overview Seite 14

© 2009 OSCI Steering Office

Asynchronous Content Data responses are delivered as osci:Request messages with the
wsa:RelatesTo header element pointing to the wsa:MessageID(s) of the related osci:Request
message(s).

Both osci:Request and osci:Response may carry custom headers for receipt demands, X509-
Certificates to be validated and corresponding XKMS Validate Reponse(s) – the latter header MAY
have been inserted on the message route by any node able and willing to validate certificates. Both
message types may carry a custom header with a time stamp signalling when a message can be seen
as obsolete from point of view of message producer (in regular, only asynchronous MEPs are
addressed here). When an osci:Request is targeted to the Recipient using his MsgBox instance,
additional time stamps are inserted in this custom header, like time of entry into this node and time
when the message was initially pulled out.

An osci:Response carries the wsa:RelatesTo header element pointing to the wsa:MessageID of
the corresponding osci:Request and – if demanded – the DeliveryReceipt as custom header.

Message of type osci:Request are used to deliver ReceptionReceipts and as well as possible fault
messages asynchronously, each of which are placed in the SOAP body block.

2.7.2.2 Message Box Access
Special message types are defined for selecting and pulling out messages of MsgBox instances as
well as to gain status lists describing selectable MsgBox contents10. Like every OSCI2 based
communication, access to MsgBox instances requires the mechanisms of WS-Addressing and WS-
Security as well as authentication, whereby for the latter strong mechanisms are needed for MsgBox
access.

For both MsgBoxFetchRequest (for pulling messages) and MsgBoxStatusListRequest (for gaining
message status lists) no custom headers are foreseen. Both message types only differ in the URI
value of the wsa:Action header element, which establishes the request type.

For both message types, the same SOAP body block structure is used to define message selection
criteria. In this version of OSCI2, selection arguments are restricted to logical expression including
message time stamps, wsa:MessageID and wsa:RelatesTo. A more generic filtering on SOAP
header elements based on XPATH expressions is foreseen for a later version of OSCI2.

Statuses of those requests are delivered in the SOAP header block of the correlating
MsgBoxResponse, while the requested content - pulled messages respective status lists - are
delivered in the SOAP body block of the MsgBoxResponse.

A status list contains major SOAP header element contents as well as the size of selected messages.

A MsgBox search result list may span more items than deliverable in one response: A status list length
can be restricted and messages pulled for must be delivered one by one. To be able to iterate on
search result lists, a message type MsgBoxGetNextRequest is defined. Besides a dedicated URI in
the header element wsa:Action such a request carries relationship information to the iteration
initiating request of type MsgBoxFetchRequest respective MsgBoxStatusListRequest.

A pulling node can close an iteration process using the special message type MsgBoxCloseRequest.
Again, this request carries a dedicated URI in the header element wsa:Action and in his SOAP body
relationships information to the request initiating the iteration.

Successful reception of pulled messages must explicitly be confirmed by the Recipient. This can be
done using foreseen elements in the body of subsequent MsgBoxGetNextRequests or by providing a

10 Parts of the contructs defined here resemble to those of WS Reliable Messaging. In contrast to WS Reliable

Messaging, here the Initiator of the communication is in the message receiving role and must confirm
reception. Thus, WS Reliable Messaging was seen to be not applicable for the purpose of MsgBox message
pulling.

OSCI-Transport Version 2 – Technical Features Overview Seite 15

© 2009 OSCI Steering Office

list of wsa:MessageID’s whose successful reception shall be confirmed in a dedicated body element
of a MsgBoxCloseRequest.

Confirmed messages MUST be marked as pulled by a MsgBox instance. There is no special request
type designed to delete messages in a MsgBox; message retention periods and rules for deletion of
messages are considered to be subject to terms of service conditions of such an instance.

2.8 Supplemental Services for Source/Target Applications
An OSCI Gateway MUST be able to support all functionalities concerning message transport defined
in OSCI2. Hence to integrate smooth into application scenarios, some functionalities for Source/Target
Applications SHOULD be provided by OSCI Gateway implementations.

OSCI2 defines no interface between OSCI Gateways and Source/Target Applications; this is a matter
of concrete implementations.

One bundle of functionalities to be considered here is access to endpoint service descriptions and
policies. Handshake on structure of Content Data exchanged between Source/Target-Applications is
obvious; further on some of the information exposed in the OSCI2 specific policy are needed as base
for end-to-end encryption or triggering valid requests for time stamp quality. As access to endpoint
service descriptions is a core functionality needed by OSCI Gateways, endpoint properties needed by
Source/Target Applications should be made accessible to them in a comfortable manner.

OSCI2 and/or the related implementations SHOULD support the creation and verification of advanced
and qualified electronic signatures on Content Data level according to the Digital Signature Act11. In
addition, support of End-to-End encryption of Content Data from Source to Target Application is
required.

Thus, support for Source- and Target Applications concerning these issues is addressed by OSCI2.
For sake of interoperability and usage comfort, conformant OSCI Gateway implementations should
provide functionalities based on standards basically defined by CMS/PKCS#7, XML Encryption and
XML Digital Signature.

Efforts towards more interoperability and ease of use are pushed in Germany and by running EU
"Large Scale Projects" with focus on EU-wide harmonization. One mayor outcome of those activities is
the "eCard-API Framework" [eCardAPI] published as Technical Directive by the German Federal
Office for Information Security (BSI) in March 2008. This specification is based on international
standards mentioned above and concretions produced at ETSI and the OASIS Digital Signature
Services Technical Committee [DSS].

The eCard-API Framework specification is planned to be brought in as one cornerstone to the EU
Community framework for electronic signatures.

As this framework also addresses functionalities exceeding the needs of interoperable digital
signatures and encryption, a suitable subset is identified and formally specified by the German
Common PKI Organization as "Part 7, Signature API“ of their specification assembly [COMMPKI].

Functionalities and interfaces defined here are incorporated by OSCI2 as recommended solution for
the support of digital signatures and end-to-end encryption.

11 Must not mandatory be provided as OSCI Gateway functionality. Dedicated products for signature production

and verification may be used, too.

OSCI-Transport Version 2 – Technical Features Overview Seite 16

3 Specifications and Concepts incorporated by OSCI 2
[COMMPKI] Common PKI Specifications for interoperable Applications, Version 2.0, 20 January

2009; http://www.common-pki.org/uploads/media/Common-PKI_v2.0.pdf

[DSS] Digital Signature Service Core - Protocols, Elements, and Bindings Version 1.0,
OASIS Standard, 11 April 2007; http://www.oasis-open.org/specs/index.php#dssv1.0

[eCardAPI] Das eCard-API-Framework (BSI TR-03112). Version 1.0, Federal Office for
Information Security (Bundesamt für Sicherheit in der Informationstechnik), March
2008, http://www.bsi.de/literat/tr/tr03112/index.htm

[MTOM] SOAP Message Transmission Optimization Mechanism, W3C Recommendation 25
January 2005, http://www.w3.org/TR/soap12-mtom/

[SAFE] S.A.F.E. (Secure Access to Federated e-Justice/e-Government) / D.I.M. (Distributed
Identity Management), Unterarbeitsgruppe SAFE der BLK Arbeitsgruppe ITStandards
in der Justiz, April 2008, http://www.justiz.de/ERV/Grob-_und_Feinkonzept/index.php

[SAMLAC] Auhtentication Context for the OASIS Security Assertion Markup Language (SAML)
V2.0, OASIS Standard, 15 March 2005, http://docs.oasis-
open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf

[SAML2] Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML)
V2.0, OASIS Standard, 15 March 2005; http://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[SOAP12] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), W3C
Recommendation 27 April 2007, http://www.w3.org/TR/soap12-part1/

[WSA] Web Services Addressing 1.0 - Core, W3C Recommendation 9 May 2006,
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/

[WSAM] Web Services Addressing 1.0 - Metadata, W3C Proposed Recommendation 31 July
2007, http://www.w3.org/TR/ws-addr-metadata/

[WSASOAP] Web Services Addressing 1.0 – SOAP Binding, W3C Recommendation 9 May 2006,
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/

[WSDL] Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,
W3C Recommendation 26 June 2007, http://www.w3.org/TR/wsdl20/

[WSDL11] Web Services Description Language (WSDL) 1.1: W3C Note 15 March 2001,
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[WSFED] Web Services Federation Language (WS-Federation), public draft release Version
1.1, December 2006, http://specs.xmlsoap.org/ws/2006/12/federation/ws-
federation.pdf

[WSI-Basic] WS-I Basic Profile 2.0, Working Group Draft, 2007-10-25, WEB SERVICES
INTEROPERABILITY ORGANIZATION, http://www.ws-i.org/Profiles/BasicProfile-
2_0(WGD).html

© 2009 OSCI Steering Office

http://www.oasis-open.org/specs/index.php#dssv1.0
http://www.bsi.de/literat/tr/tr03112/index.htm
http://www.w3.org/TR/soap12-mtom/
http://www.justiz.de/ERV/Grob-_und_Feinkonzept/index.php
http://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://specs.xmlsoap.org/ws/2006/12/federation/ws-federation.pdf
http://specs.xmlsoap.org/ws/2006/12/federation/ws-federation.pdf
http://www.ws-i.org/Profiles/BasicProfile-2_0(WGD).html
http://www.ws-i.org/Profiles/BasicProfile-2_0(WGD).html

OSCI-Transport Version 2 – Technical Features Overview Seite 17

© 2009 OSCI Steering Office

[WSI-BP11] WS-I Basic Profile 1.1, Final Material, 2006-04-10, WEB SERVICES
INTEROPERABILITY ORGANIZATION, http://www.ws-i.org/Profiles/BasicProfile-
1.1.html

[WSMC] Web Services Make Connection (WS MakeConnection), Version 1.0, OASIS
Standard, 14 June 2007, http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-
spec-os-01.pdf

[WSPA] Web Services Policy 1.5 - Attachment, W3C Recommendation, 4 September 2007;
http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/

[WSPF] Web Services Policy 1.5 - Framework, W3C Recommendation, 4 September 2007;
http://www.w3.org/TR/2007/REC-ws-policy-20070904/

[WSRM] Web Services Reliable Messaging (WS-ReliableMessaging) Version 1.1, OASIS
Standard Specification incorporating approved Errata, 07 January 2008,
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01-e1.pdf

[WSRMP] Web Services Reliable Messaging Policy Assertion (WS-RM Policy) Version 1.1
OASIS Standard Specification incorporating approved Errata, 07 January 2008,
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01-e1.pdf

[WSS] Web Services Security: SOAP Message Security 1.1, OASIS Standard Specification,
1 February 2006, http://www.oasis-open.org/committees/download.php/16790/wss-
v1.1-spec-os-SOAPMessageSecurity.pdf

[WSSC] Web Services Secure Conversation 1.3, OASIS Standard, 1 March 2007,
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-
secureconversation-1.3-os.pdf

[WSSP] WS-SecurityPolicy 1.2, OASIS Standard 1 July 2007, http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf

[WST] WS-Trust 1.3, OASIS Standard, 19 March 2007, http://docs.oasis-open.org/ws-sx/ws-
trust/200512/ws-trust-1.3-os.pdf

[XAdES] European Telecommunications Standards Institute. ETSI TS 101 903: XML Advanced
Electronic Signatures, V1.3.2 2006-03;
http://webapp.etsi.org/action/PU/20060307/ts_101903v010302p.pdf.

[XENC] World Wide Web Consortium. XML Encryption Syntax and Processing, W3C
Recommendation, 10.12.2002;
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

[XKMS] XML Key Management Specification (XKMS 2.0) v2, W3C Recommendation, 28 June
2005, http://www.w3.org/TR/2005/REC-xkms2-20050628/

[XMLDSIG] World Wide Web Consortium. XML-Signature Syntax and Processing, W3C
Recommendation (Second Edition), 10 June 2008; http://www.w3.org/TR/xmldsig-
core/

http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.pdf
http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/
http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://webapp.etsi.org/action/PU/20060307/ts_101903v010302p.pdf
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

	1 Introduction
	2 OSCI Messaging: Adoption and Extension of Web Services Specifications
	2.1 General SOAP Message Structure
	2.2 Role and Communication Model
	2.2.1 Secured Web Service Paradigm – Authentication and Authorization
	2.2.2 Communication Endpoints
	2.2.3 Message Relaying
	2.2.4 Verifiability of Message Exchange
	2.2.5 Message Exchange Patterns
	2.2.5.1 Initiator to Recipient synchronous point-to-point
	2.2.5.2 Initiator to Recipients MsgBox, asynchronous Response

	2.2.6 Dedicated Dispatcher Service

	2.3 Addressing Messages
	2.4 Token for Authentication and Authorization
	2.5 Securing Messages
	2.6 Validation of X509-Certificates
	2.7 Message Types
	2.7.1 WS-Trust Messages
	2.7.2 OSCI Messages
	2.7.2.1 osci:Request /-Response
	2.7.2.2 Message Box Access

	2.8 Supplemental Services for Source/Target Applications

	3 Specifications and Concepts incorporated by OSCI 2

